
TECHNICAL NOTE ON THE CALCULATION OF MAXIMALLY–LOCALIZED
WANNIER FUNCTIONS WITHIN THE FLAPW + LO FORMALISM

We give in the following the formula used in our original 2002 implementation1 of the
maximally–localized Wannier functions (MLWF) method of Marzari and Vanderbilt2 within
the full–potential linearized–augmented–plane–wave (FLAPW) framework. This approach
has been used during past years for various applications.3–5 The FLAPW code which was
basic to this implementation had been developed initially by Jansen and Freeman.6

1. Basic ingredients of the localization functional

Given the Bloch orbitals ψnk(r) = unk(r) exp(ik · r), we determine their periodical part |unk〉
on a regular mesh of k–points, and use finite differences to evaluate required derivatives. For
any given k–point, we have a star b of points that are first–neighbors. We define M (k,b)

mn =
〈umk|un,k+b〉 as the matrix elements between Bloch orbitals at neighboring k–points. The
M

(k,b)
mn is a central quantity in the formalism,2 since we can express all the contributions to

the localization functional using the connection made by Blount,7 together with the finite–
difference evaluations of the gradients.
The Bloch wavefunctions are expanded in terms of a set of LAPW + LO basis functions
φjk(r):

ψnk(r) =
∑
j

znk,j φk,j(r)

=

{
Ω−1/2

∑
j znk,j exp[i(k + Gj)·r] r ∈ I;∑

L i
l [AαL(nk)ul(rα) +Bα

L(nk)u̇l(rα) + CαL(nk)u(2)
l (rα)]YL(r̂α) |r−τα | ≤ Rα,

with

AαL(nk) =
∑
j

znk,jÃ
α
L(k + Gj) +

∑
j0

znk,j0Ã
α
L0

(k + Gj0) δLL0 ,

Bα
L(nk) =

∑
j

znk,jB̃
α
L(k + Gj) +

∑
j0

znk,j0B̃
α
L0

(k + Gj0) δLL0 , (1)

CαL(nk) =
∑
j0

znk,j0C̃
α
L0

(k + Gj0) δLL0 .

In these formulas, ul(rα) ≡ ul(rα, E
(1)
l ) and u̇l(rα) ≡ u̇l(rα, E

(1)
l ) are the radial solutions

of the scalar-relativistic Schrödinger equation inside the muffin-tin spheres and their energy
derivatives, both evaluated at energy E(1)

l . The extra radial function u
(2)
l (rα) ≡ ul(rα, E

(2)
l )

is added8 to the ul(rα) and u̇l(rα) for certain l = l0 values (e.g. those corresponding to
semi–core states, with energy parameters E(2)

l chosen accordingly, or when an enlargment of
the standard basis is required in order to increase its variational freedom). The subset of
additional reciprocal lattice vectors Gj0 associated with the local orbitals is written {Gj0}.
Note that the relevant set of reciprocal lattice vectors {Gj} required for all expansions in
the interstitial region does not include the {Gj0} subset. Ω is the unit cell volume, Rα and
τα are the MT radius and position of atom α, rα = r − τα, and L = {l,m} is a collective
angular momentum index.
The ÃαL(k+Gj) and B̃α

L(k+Gj) coefficients are determined by imposing the continuity of each
LAPW basis function and of its radial derivatives at the muffin-tin boundaries. Similarly, the
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extra ÃαL0
(k+Gj0), B̃α

L0
(k+Gj0), and C̃αL0

(k+Gj0) coefficients are determined by imposing
that the local orbital basis functions and their radial derivatives go to zero at the muffin–tin
boundaries.
The set {Gj} of reciprocal lattice vectors is determined by the condition |k + Gj | ≤ kmax.
We consider first the interstitial contribution to the overlap matrix elements. We have

unk(r) = Ω−1/2
∑
j

znk(Gj) exp(iGj ·r),

giving

M (k,b)
mn

∣∣∣
I

= 〈umk|un,k+b〉I =
∫

Ω
u∗mk(r)un,k+b(r)U(r)dr

=
∑
ij

z∗mk(Gi) U(Gi −Gj) zn,k+b(Gj), (2)

where U(Gi − Gj) is the Fourier transform of the step function U(r). This expression is
efficiently evaluated numerically, using Fast Fourier Transforms (FFT). We examine now the
spheres contributions.
From the Bloch wavefunction inside the sphere α, we get

uαnk(r) = exp [−i k·(τα + rα)] ψαnk(r),

leading to

〈umk|un,k+b〉Sα = exp (−i b·τα)
∫
Sα

ψα∗mk(rα) ψαn,k+b(rα) exp (−i b·rα) drα.

Developing the “overlap charge densities”, we have

ψα∗mk(rα) ψαn,k+b(rα) =
∑
L1,L2

il2−l1 Y ∗L1
YL2

∑
κ1,κ2

Aακ1 ∗
L1

(m,k)Aακ2
L2

(n,k + b) vκ1
l1

(rα) vκ2
l2

(rα).

Here, both indices κ1 and κ2 take the values 1, 2, and 3, and (Aκi , vκi) refer to (A, u),
(B, u̇), and (C, u(2)) for κi = 1, 2, and 3 respectively. Together with the usual Rayleigh
expansion of a plane wave

exp(i k·rα) = 4π
∑
L

il Y ∗L (k̂) YL(r̂α) jl (k rα),

we obtain

M (k,b)
mn

∣∣∣
Sα

= 〈umk|un,k+b〉Sα = 4π exp (−i b·τα)
∑

L,L1,L2

(−1)l Y ∗L (̂b)
∫ Rα

0
r2
αdrαjl (b rα)

×il2−l1+l CL1
L2 L

∑
κ1,κ2

Aακ1 ∗
L1

(m,k)Aακ2
L2

(n,k + b) vκ1
l1

(rα) vκ2
l2

(rα), (3)

where the Gaunt coefficients CL1
L2 L

are defined by

CL1
L2 L

=
∫
Y ∗L1

YLYL2 dr̂.
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Practically, the 9 radial integrals (for each atom type, l1, l2, and l values) corresponding to
the products ul1ul2 , ul1 u̇l2 , u̇l1ul2 , u̇l1 u̇l2 , ul1u

(2)
l2

, u(2)
l1
ul2 , u̇l1u

(2)
l2

, u(2)
l1
u̇l2 , and u

(2)
l1
u

(2)
l2

, which
are written symbolically ∫ Rα

0
r2
αdrα jl (b rα) vκ1

l1
(rα) vκ2

l2
(rα),

are evaluated first. Inside the α, l1, l2, and l loops, the quantities

il2−l1+l CL1
L2 L
Aακ1 ∗
L1

(m,k)Aακ2
L2

(n,k + b)

are then evaluated. Because of the general condition on the Gaunt coefficients CL1
L2 L

, which
vanish unless l1 + l2 + l is an even integer, l2 − l1 + l has also to be even, and il2−l1+l =
(−1)(l2−l1+l)/2 in the above equation.
The actual organization of the matrix elements M (k,b)

mn evaluation is now described.
First, the regular N1 × N2 × N3 mesh of num_kpts points belonging to the Brillouin zone
(BZ) is built using the following schematic algorithm

ik = 0
do i = 1, N1

do j = 1, N2

do k = 1, N3

ik = ik + 1
k (ik) = (i− 1)/N1 a∗1 + (j − 1)/N2 a∗2 + (k − 1)/N3 a∗3

end do
end do
end do
num_kpts = ik

where a∗α are the primitive vectors of the reciprocal lattice. For each k–point of this list, the
star of nntot first–neighbors (k + b + Gk+b) is constructed, where Gk+b is the reciprocal
lattice vector such that k + b belongs to the first BZ. Indexes ik+b of these star elements
with respect to the original k–points list are available from the file seedname.nnkp, obtained
in a preliminary run of the program wannier90. The matrix elements M (k,b)

mn can be finally
evaluated.
The resulting information is written in a file seedname.mmn, whose first line is a user com-
ment, and the second line the 3 integers: num_bands, num_kpts, nntot. It is followed by
num_kpts×nntot blocks of data organized in sets whose structure is indicated below.

do ik = 1, num_kpts
do ib = 1, nntot

ik ik+b (Gk+b)1 (Gk+b)2 (Gk+b)3

do n = 1, num_bands
do m = 1, num_bands

< [M (k,b)
mn ] = [M (k,b)

mn ]
· · · · · ·
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end do
end do

end do
end do

2. Initial guess of Wannier functions

We consider a trial Wannier orbital g(lc)
n (rα), centered into an atomic sphere α, and restricted

to it, consisting of a Gaussian function, modulated by a linear combination of spherical
harmonics with a fixed l = lc value, and −lc ≤ mc ≤ lc

g(lc)
n (rα) = g(rα)

∑
mc

cnlcmcYlcmc(r̂α).

The coefficients cnlcmc might correspond, e.g., to the transformation of a spherical harmonic
in a rotated coordinate system, as given generally below in terms of the Euler angles α, β
and γ

Ylm(r̂′) =
+l∑

m′=−l
Ylm′(r̂)D(l)

m′m (α, β, γ),

and/or to those of the linear combination of spherical harmonics forming the hybrid orbitals
of Table 3.2 in the User Guide. We found indeed that a very fast convergence can be achieved,
starting from trial WF’s displaying both the correct symmetry and the proper orientation
with respect to the structure under consideration. We have

g(rα) = exp [−(rα/λ)2],

with λ chosen so that g(rα) is zero outside the sphere α.
We suppose now that the Gaussian is centered in a sphere β, which is not necessarily coin-
ciding with its atom basis representative α. This implies that rβ = r − (τα + R), where R
is the direct lattice vectors combination, connecting the atom β with its representative α.
Using the notations of the previous subsection for the LAPW coefficients, a Bloch function
representation inside the sphere β can be written symbolically

ψmk(r)|Sβ = exp (i k·R)
∑
L

il
∑
κ

AακL (m,k) vκl (rα) YL(r̂α).

This in turn leads to the following form of the matrix A(k)
mn of phases

A(k)
mn = 〈ψmk|gn〉 = 〈ψmk|gn〉Sβ

= exp (−i k·R) i−lc
∑
mc

cnlcmc

∑
κ

Aακ ∗lcmc(m,k)
∫ Rα

0
r2
αdrα g(rα) vκlc(rα). (4)

Use has been made of spherical harmonics orthonormality. The 3 below radial integrals (for
the relevant atom type representative α and the lc value), corresponding to ulc , u̇lc , and u(2)

lc∫ Rα

0
r2
αdrα g(rα) vκlc(rα),

are evaluated separately.
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As indicated in the Appendix D of Ref. (2), a symmetric orthonormalization is performed
on A(k)

mn in a subsequent step, in order to get the basic unitary matrix U (k)
mn, transforming the

Bloch orbitals into Wannier functions.
Information regarding the “projection matrices” A(k)

mn is written in file seedname.amn, whose
first line is a user comment, and the second line is the 3 integers: num_bands, num_kpts,
num_wann. It is followed by num_bands×num_wann×num_kpts lines obtained as indicated be-
low

do ik = 1, num_kpts
do m = 1, num_bands
do n = 1, num_wann

m n ik < [A(k)
mn] = [A(k)

mn]
· · · · · · · · · · · · · · ·

end do
end do

end do

3. Projections of Wannier functions

It can be of interest to calculate the projection of any Wannier function sitting in the central
cell R = 0 onto some given “building blocks”. We can write

|wn0〉 =
∑
l,R

|wbb
lR〉〈wbb

lR|wn0〉 =
Ω

(2π)3

∫
BZ

dk
∑
m

U (k)
mn |ψmk〉.

We have also
〈wbb

lR| =
Ω

(2π)3

∫
BZ

dk′ eik
′·R
∑
j

U
∗bb (k′)
jl 〈ψjk′ |,

so that

〈wbb
lR|wn0〉 =

[
Ω

(2π)3

]2 ∫ ∫
dk dk′ eik

′·R
∑
j,m

U
∗bb (k′)
jl U (k)

mn 〈ψjk′ |ψmk〉

=
Ω

(2π)3

∫
BZ

dk eik·R
∑
m

U
∗bb (k)
ml U (k)

mn

=
1
N

∑
k

eik·R
∑
m

U
∗bb (k)
ml U (k)

mn, (5)

making use of 〈ψjk′ |ψmk〉 = δjm δk′k.

4. (l, m)–projections of Wannier functions

We want to calculate the (l,m)–projection inside the sphere Sβ centered on site β of a Wannier
function in the central cell at R = 0, i.e. the quantity 〈wn0|wn0〉Sβ

lm

. We have

|wn0〉 =
Ω

(2π)3

∫
BZ

dk
∑
p

U (k)
pn |ψpk〉 =

1
N

∑
k

∑
p

U (k)
pn |ψpk〉.
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We can write
〈wn0|wn0〉Sβ =

1
N2

∑
k,k′

∑
p,p′

U
∗(k′)
p′n U (k)

pn 〈ψp′k′ |ψpk〉Sβ .

The braket on the right–hand side of this equation is not a product of Kronecker functions,
because the direct space integration is performed on a portion of the full unit cell only.
We suppose now that the sphere at β is not necessarily coinciding with the one of its atom
representative α. This implies for the atomic positions that τ β = τα + Rβ, where Rβ is
the direct lattice vectors combination connecting the atom at β with its representative at α.
Using the notations of subsection 1 for the LAPW coefficients, a Bloch function representation
inside the sphere Sβ can be written symbolically

ψpk(r)|Sβ = eik·Rβ
∑
l,m

il
∑
κ

Aακlm(p,k) vκl (rα) Ylm(r̂α).

Using the orthogonality of spherical harmonics, we have

〈ψp′k′ |ψpk〉Sβ = ei(k−k′)·Rβ
∑
l,m

∑
κ1,κ2

Aακ1 ∗
lm (p′,k′)Aακ2

lm (p,k)
∫ Rα

0
r2
αdrα v

κ1
l (rα) vκ2

l (rα)

=
∑
l,m

{ei(k−k′)·Rβ
∑
κ1,κ2

Aακ1 ∗
lm (p′,k′)Aακ2

lm (p,k)Nα κ1,κ2

l },

where Nα κ1,κ2

l are the radial integrals

Nα κ1,κ2

l =
∫ Rα

0
r2
αdrα v

κ1
l (rα) vκ2

l (rα).

Because of the occurence of a (l,m)–summation in 〈ψp′k′ |ψpk〉Sβ , we have the result

〈wn0|wn0〉Sβ
lm

=
1
N2

∑
k,k′

ei(k−k′)·Rβ
∑
p,p′

U
∗(k′)
p′n U (k)

pn

∑
κ1,κ2

Aακ1 ∗
lm (p′,k′)Aακ2

lm (p,k)Nα κ1,κ2

l .

The total charge associated with |wn0〉 in Sβ is simply
∑

l,m 〈wn0|wn0〉Sβ
lm

.
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