TECHNICAL NOTE ON THE CALCULATION OF MAXIMALLY-LOCALIZED WANNIER FUNCTIONS WITHIN THE FLAPW + LO FORMALISM

We give in the following the formula used in our original 2002 implementation ${ }^{1}$ of the maximally-localized Wannier functions (MLWF) method of Marzari and Vanderbilt ${ }^{2}$ within the full-potential linearized-augmented-plane-wave (FLAPW) framework. This approach has been used during past years for various applications. ${ }^{3-5}$ The FLAPW code which was basic to this implementation had been developed initially by Jansen and Freeman. ${ }^{6}$

1. Basic ingredients of the localization functional

Given the Bloch orbitals $\psi_{n \mathbf{k}}(\mathbf{r})=u_{n \mathbf{k}}(\mathbf{r}) \exp (i \mathbf{k} \cdot \mathbf{r})$, we determine their periodical part $\left|u_{n \mathbf{k}}\right\rangle$ on a regular mesh of \mathbf{k}-points, and use finite differences to evaluate required derivatives. For any given \mathbf{k}-point, we have a star \mathbf{b} of points that are first-neighbors. We define $M_{m n}^{(\mathbf{k}, \mathbf{b})}=$ $\left\langle u_{m \mathbf{k}} \mid u_{n, \mathbf{k}+\mathbf{b}}\right\rangle$ as the matrix elements between Bloch orbitals at neighboring \mathbf{k}-points. The $M_{m n}^{(\mathbf{k}, \mathbf{b})}$ is a central quantity in the formalism, ${ }^{2}$ since we can express all the contributions to the localization functional using the connection made by Blount, ${ }^{7}$ together with the finitedifference evaluations of the gradients.
The Bloch wavefunctions are expanded in terms of a set of LAPW +LO basis functions $\phi_{j \mathbf{k}}(\mathbf{r})$:

$$
\begin{aligned}
\psi_{n \mathbf{k}}(\mathbf{r}) & =\sum_{j} z_{n \mathbf{k}, j} \phi_{\mathbf{k}, j}(\mathbf{r}) \\
& =\left\{\begin{array}{lr}
\Omega^{-1 / 2} \sum_{j} z_{n \mathbf{k}, j} \exp \left[i\left(\mathbf{k}+\mathbf{G}_{j}\right) \cdot \mathbf{r}\right] & \mathbf{r} \in I \\
\sum_{L} i^{l}\left[A_{L}^{\alpha}(n \mathbf{k}) u_{l}\left(r_{\alpha}\right)+B_{L}^{\alpha}(n \mathbf{k}) \dot{u}_{l}\left(r_{\alpha}\right)+C_{L}^{\alpha}(n \mathbf{k}) u_{l}^{(2)}\left(r_{\alpha}\right)\right] Y_{L}\left(\widehat{r}_{\alpha}\right) & \left|\mathbf{r}-\boldsymbol{\tau}_{\boldsymbol{\alpha}}\right| \leq R_{\alpha},
\end{array}\right.
\end{aligned}
$$

with

$$
\begin{align*}
A_{L}^{\alpha}(n \mathbf{k}) & =\sum_{j} z_{n \mathbf{k}, j} \widetilde{A}_{L}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j}\right)+\sum_{j_{0}} z_{n \mathbf{k}, j_{0}} \widetilde{A}_{L_{0}}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j_{0}}\right) \delta_{L L_{0}}, \\
B_{L}^{\alpha}(n \mathbf{k}) & =\sum_{j} z_{n \mathbf{k}, j} \widetilde{B}_{L}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j}\right)+\sum_{j_{0}} z_{n \mathbf{k}, j_{0}} \widetilde{B}_{L_{0}}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j_{0}}\right) \delta_{L L_{0}}, \tag{1}\\
C_{L}^{\alpha}(n \mathbf{k}) & =\sum_{j_{0}} z_{n \mathbf{k}, j_{0}} \widetilde{C}_{L_{0}}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j_{0}}\right) \delta_{L L_{0}} .
\end{align*}
$$

In these formulas, $u_{l}\left(r_{\alpha}\right) \equiv u_{l}\left(r_{\alpha}, E_{l}^{(1)}\right)$ and $\dot{u}_{l}\left(r_{\alpha}\right) \equiv \dot{u}_{l}\left(r_{\alpha}, E_{l}^{(1)}\right)$ are the radial solutions of the scalar-relativistic Schrödinger equation inside the muffin-tin spheres and their energy derivatives, both evaluated at energy $E_{l}^{(1)}$. The extra radial function $u_{l}^{(2)}\left(r_{\alpha}\right) \equiv u_{l}\left(r_{\alpha}, E_{l}^{(2)}\right)$ is added ${ }^{8}$ to the $u_{l}\left(r_{\alpha}\right)$ and $\dot{u}_{l}\left(r_{\alpha}\right)$ for certain $l=l_{0}$ values (e.g. those corresponding to semi-core states, with energy parameters $E_{l}^{(2)}$ chosen accordingly, or when an enlargment of the standard basis is required in order to increase its variational freedom). The subset of additional reciprocal lattice vectors $\mathbf{G}_{j_{0}}$ associated with the local orbitals is written $\left\{\mathbf{G}_{j_{0}}\right\}$. Note that the relevant set of reciprocal lattice vectors $\left\{\mathbf{G}_{j}\right\}$ required for all expansions in the interstitial region does not include the $\left\{\mathbf{G}_{j_{0}}\right\}$ subset. Ω is the unit cell volume, R_{α} and $\boldsymbol{\tau}_{\boldsymbol{\alpha}}$ are the MT radius and position of atom $\alpha, \mathbf{r}_{\alpha}=\mathbf{r}-\boldsymbol{\tau}_{\boldsymbol{\alpha}}$, and $L=\{l, m\}$ is a collective angular momentum index.
The $\widetilde{A}_{L}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j}\right)$ and $\widetilde{B}_{L}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j}\right)$ coefficients are determined by imposing the continuity of each LAPW basis function and of its radial derivatives at the muffin-tin boundaries. Similarly, the
extra $\widetilde{A}_{L_{0}}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j_{0}}\right), \widetilde{B}_{L_{0}}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j_{0}}\right)$, and $\widetilde{C}_{L_{0}}^{\alpha}\left(\mathbf{k}+\mathbf{G}_{j_{0}}\right)$ coefficients are determined by imposing that the local orbital basis functions and their radial derivatives go to zero at the muffin-tin boundaries.
The set $\left\{\mathbf{G}_{j}\right\}$ of reciprocal lattice vectors is determined by the condition $\left|\mathbf{k}+\mathbf{G}_{j}\right| \leq k_{\max }$. We consider first the interstitial contribution to the overlap matrix elements. We have

$$
u_{n \mathbf{k}}(\mathbf{r})=\Omega^{-1 / 2} \sum_{j} z_{n \mathbf{k}}\left(\mathbf{G}_{j}\right) \exp \left(i \mathbf{G}_{j} \cdot \mathbf{r}\right),
$$

giving

$$
\begin{align*}
\left.M_{m n}^{(\mathbf{k}, \mathbf{b})}\right|_{I} & =\left\langle u_{m \mathbf{k}} \mid u_{n, \mathbf{k}+\mathbf{b}}\right\rangle_{I}=\int_{\Omega} u_{m \mathbf{k}}^{*}(\mathbf{r}) u_{n, \mathbf{k}+\mathbf{b}}(\mathbf{r}) U(\mathbf{r}) d \mathbf{r} \\
& =\sum_{i j} z_{m \mathbf{k}}^{*}\left(\mathbf{G}_{i}\right) U\left(\mathbf{G}_{i}-\mathbf{G}_{j}\right) z_{n, \mathbf{k}+\mathbf{b}}\left(\mathbf{G}_{j}\right), \tag{2}
\end{align*}
$$

where $U\left(\mathbf{G}_{i}-\mathbf{G}_{j}\right)$ is the Fourier transform of the step function $U(\mathbf{r})$. This expression is efficiently evaluated numerically, using Fast Fourier Transforms (FFT). We examine now the spheres contributions.
From the Bloch wavefunction inside the sphere α, we get

$$
u_{n \mathbf{k}}^{\alpha}(\mathbf{r})=\exp \left[-i \mathbf{k} \cdot\left(\boldsymbol{\tau}_{\alpha}+\mathbf{r}_{\alpha}\right)\right] \psi_{n \mathbf{k}}^{\alpha}(\mathbf{r}),
$$

leading to

$$
\left\langle u_{m \mathbf{k}} \mid u_{n, \mathbf{k}+\mathbf{b}}\right\rangle_{S_{\alpha}}=\exp \left(-i \mathbf{b} \cdot \boldsymbol{\tau}_{\alpha}\right) \int_{S_{\alpha}} \psi_{m \mathbf{k}}^{\alpha *}\left(\mathbf{r}_{\alpha}\right) \psi_{n, \mathbf{k}+\mathbf{b}}^{\alpha}\left(\mathbf{r}_{\alpha}\right) \exp \left(-i \mathbf{b} \cdot \mathbf{r}_{\alpha}\right) d \mathbf{r}_{\alpha} .
$$

Developing the "overlap charge densities", we have

$$
\psi_{m \mathbf{k}}^{\alpha *}\left(\mathbf{r}_{\alpha}\right) \psi_{n, \mathbf{k}+\mathbf{b}}^{\alpha}\left(\mathbf{r}_{\alpha}\right)=\sum_{L_{1}, L_{2}} i^{l_{2}-l_{1}} Y_{L_{1}}^{*} Y_{L_{2}} \sum_{\kappa_{1}, \kappa_{2}} \mathcal{A}_{L_{1}}^{\alpha \kappa_{1} *}(m, \mathbf{k}) \mathcal{A}_{L_{2}}^{\alpha \kappa_{2}}(n, \mathbf{k}+\mathbf{b}) v_{l_{1}}^{\kappa_{1}}\left(r_{\alpha}\right) v_{l_{2}}^{\kappa_{2}}\left(r_{\alpha}\right) .
$$

Here, both indices κ_{1} and κ_{2} take the values 1,2 , and 3 , and ($\mathcal{A}^{\kappa_{i}}, v^{\kappa_{i}}$) refer to (A, u), (B, \dot{u}), and $\left(C, u^{(2)}\right)$ for $\kappa_{i}=1,2$, and 3 respectively. Together with the usual Rayleigh expansion of a plane wave

$$
\exp \left(i \mathbf{k} \cdot \mathbf{r}_{\alpha}\right)=4 \pi \sum_{L} i^{l} Y_{L}^{*}(\widehat{k}) Y_{L}\left(\widehat{r}_{\alpha}\right) j_{l}\left(k r_{\alpha}\right),
$$

we obtain

$$
\begin{align*}
\left.M_{m n}^{(\mathbf{k}, \mathbf{b})}\right|_{S_{\alpha}}= & \left\langle u_{m \mathbf{k}} \mid u_{n, \mathbf{k}+\mathbf{b}}\right\rangle_{S_{\alpha}}=4 \pi \exp \left(-i \mathbf{b} \cdot \tau_{\alpha}\right) \sum_{L, L_{1}, L_{2}}(-1)^{l} Y_{L}^{*}(\widehat{b}) \int_{0}^{R_{\alpha}} r_{\alpha}^{2} d r_{\alpha} j_{l}\left(b r_{\alpha}\right) \\
& \times i^{l_{2}-l_{1}+l} C_{L_{2}}^{L_{1}} L \sum_{\kappa_{1}, \kappa_{2}} \mathcal{A}_{L_{1}}^{\alpha \kappa_{1} *}(m, \mathbf{k}) \mathcal{A}_{L_{2}}^{\alpha \kappa_{2}}(n, \mathbf{k}+\mathbf{b}) v_{l_{1}}^{\kappa_{1}}\left(r_{\alpha}\right) v_{l_{2}}^{\kappa_{2}}\left(r_{\alpha}\right), \tag{3}
\end{align*}
$$

where the Gaunt coefficients $C_{L_{2} L}^{L_{1}}$ are defined by

$$
C_{L_{2} L}^{L_{1}}=\int Y_{L_{1}}^{*} Y_{L} Y_{L_{2}} d \widehat{r}
$$

Practically, the 9 radial integrals (for each atom type, l_{1}, l_{2}, and l values) corresponding to the products $u_{l_{1}} u_{l_{2}}, u_{l_{1}}{\dot{l_{2}}}, \dot{u}_{l_{1}} u_{l_{2}}, \dot{u}_{l_{1}} \dot{u}_{l_{2}}, u_{l_{1}} u_{l_{2}}^{(2)}, u_{l_{1}}^{(2)} u_{l_{2}}, \dot{u}_{l_{1}} u_{l_{2}}^{(2)}, u_{l_{1}}^{(2)} \dot{u}_{l_{2}}$, and $u_{l_{1}}^{(2)} u_{l_{2}}^{(2)}$, which are written symbolically

$$
\int_{0}^{R_{\alpha}} r_{\alpha}^{2} d r_{\alpha} j_{l}\left(b r_{\alpha}\right) v_{l_{1}}^{\kappa_{1}}\left(r_{\alpha}\right) v_{l_{2}}^{\kappa_{2}}\left(r_{\alpha}\right)
$$

are evaluated first. Inside the α, l_{1}, l_{2}, and l loops, the quantities

$$
i^{l_{2}-l_{1}+l} C_{L_{2} L}^{L_{1}} \mathcal{A}_{L_{1}}^{\alpha \kappa_{1} *}(m, \mathbf{k}) \mathcal{A}_{L_{2}}^{\alpha \kappa_{2}}(n, \mathbf{k}+\mathbf{b})
$$

are then evaluated. Because of the general condition on the Gaunt coefficients $C_{L_{2} L}^{L_{1}}$, which vanish unless $l_{1}+l_{2}+l$ is an even integer, $l_{2}-l_{1}+l$ has also to be even, and $i^{l_{2}-l_{1}+l}=$ $(-1)^{\left(l_{2}-l_{1}+l\right) / 2}$ in the above equation.
The actual organization of the matrix elements $M_{m n}^{(\mathbf{k}, \mathbf{b})}$ evaluation is now described.
First, the regular $N_{1} \times N_{2} \times N_{3}$ mesh of num_kpts points belonging to the Brillouin zone $(B Z)$ is built using the following schematic algorithm

$$
\begin{aligned}
& i_{\mathbf{k}}=0 \\
& \text { do } i=1, N_{1} \\
& \text { do } j=1, N_{2} \\
& \quad \operatorname{do} k=1, N_{3} \\
& \quad i_{\mathbf{k}}=i_{\mathbf{k}}+1 \\
& \mathbf{k}\left(i_{\mathbf{k}}\right)=(i-1) / N_{1} \mathbf{a}_{1}^{*}+(j-1) / N_{2} \mathbf{a}_{2}^{*}+(k-1) / N_{3} \mathbf{a}_{3}^{*} \\
& \text { end do } \\
& \text { end do } \\
& \text { end do } \\
& \text { num_kpts }=i_{\mathbf{k}}
\end{aligned}
$$

where \mathbf{a}_{α}^{*} are the primitive vectors of the reciprocal lattice. For each \mathbf{k}-point of this list, the star of nntot first-neighbors $\left(\mathbf{k}+\mathbf{b}+\mathbf{G}_{\mathbf{k}+\mathbf{b}}\right)$ is constructed, where $\mathbf{G}_{\mathbf{k}+\mathbf{b}}$ is the reciprocal lattice vector such that $\mathbf{k}+\mathbf{b}$ belongs to the first $B Z$. Indexes $i_{\mathbf{k}+\mathbf{b}}$ of these star elements with respect to the original \mathbf{k}-points list are available from the file seedname. nnkp, obtained in a preliminary run of the program wannier90. The matrix elements $M_{m n}^{(\mathbf{k}, \mathbf{b})}$ can be finally evaluated.
The resulting information is written in a file seedname.mmn, whose first line is a user comment, and the second line the 3 integers: num_bands, num_kpts, nntot. It is followed by num_kpts \times nntot blocks of data organized in sets whose structure is indicated below.

$$
\begin{gathered}
\text { do } i_{\mathbf{k}}=1, \text { num_kpts } \\
\text { do } i_{\mathbf{b}}=1, \text { nntot }
\end{gathered}
$$

$$
i_{\mathbf{k}} \quad i_{\mathbf{k}+\mathbf{b}} \quad\left(\mathbf{G}_{\mathbf{k}+\mathbf{b}}\right)_{1} \quad\left(\mathbf{G}_{\mathbf{k}+\mathbf{b}}\right)_{2} \quad\left(\mathbf{G}_{\mathbf{k}+\mathbf{b}}\right)_{3}
$$

$$
\text { do } n=1 \text {, num_bands }
$$

$$
\text { do } m=1 \text {, num_bands }
$$

$$
\begin{array}{cc}
\Re\left[M_{m n}^{(\mathbf{k}, \mathbf{b})}\right] & \Im\left[M_{m n}^{(\mathbf{k}, \mathbf{b})}\right] \\
\ldots & \cdots
\end{array}
$$

```
        end do
        end do
    end do
end do
```


2. Initial guess of Wannier functions

We consider a trial Wannier orbital $g_{n}^{\left(l_{c}\right)}\left(\mathbf{r}_{\alpha}\right)$, centered into an atomic sphere α, and restricted to it, consisting of a Gaussian function, modulated by a linear combination of spherical harmonics with a fixed $l=l_{c}$ value, and $-l_{c} \leq m_{c} \leq l_{c}$

$$
g_{n}^{\left(l_{c}\right)}\left(\mathbf{r}_{\alpha}\right)=g\left(r_{\alpha}\right) \sum_{m_{c}} c_{l_{c} m_{c}}^{n} Y_{l_{c} m_{c}}\left(\widehat{r}_{\alpha}\right) .
$$

The coefficients $c_{l_{c} m_{c}}^{n}$ might correspond, e.g., to the transformation of a spherical harmonic in a rotated coordinate system, as given generally below in terms of the Euler angles α, β and γ

$$
Y_{l m}\left(\widehat{\mathbf{r}}^{\prime}\right)=\sum_{m^{\prime}=-l}^{+l} Y_{l m^{\prime}}(\widehat{\mathbf{r}}) D_{m^{\prime} m}^{(l)}(\alpha, \beta, \gamma),
$$

and/or to those of the linear combination of spherical harmonics forming the hybrid orbitals of Table 3.2 in the User Guide. We found indeed that a very fast convergence can be achieved, starting from trial WF's displaying both the correct symmetry and the proper orientation with respect to the structure under consideration. We have

$$
g\left(r_{\alpha}\right)=\exp \left[-\left(r_{\alpha} / \lambda\right)^{2}\right],
$$

with λ chosen so that $g\left(r_{\alpha}\right)$ is zero outside the sphere α.
We suppose now that the Gaussian is centered in a sphere β, which is not necessarily coinciding with its atom basis representative α. This implies that $\mathbf{r}_{\beta}=\mathbf{r}-\left(\boldsymbol{\tau}_{\alpha}+\mathbf{R}\right)$, where \mathbf{R} is the direct lattice vectors combination, connecting the atom β with its representative α.
Using the notations of the previous subsection for the LAPW coefficients, a Bloch function representation inside the sphere β can be written symbolically

$$
\left.\psi_{m \mathbf{k}}(\mathbf{r})\right|_{S_{\beta}}=\exp (i \mathbf{k} \cdot \mathbf{R}) \sum_{L} i^{l} \sum_{\kappa} \mathcal{A}_{L}^{\alpha \kappa}(m, \mathbf{k}) v_{l}^{\kappa}\left(r_{\alpha}\right) Y_{L}\left(\widehat{r}_{\alpha}\right)
$$

This in turn leads to the following form of the matrix $A_{m n}^{(\mathbf{k})}$ of phases

$$
\begin{align*}
A_{m n}^{(\mathbf{k})} & =\left\langle\psi_{m \mathbf{k}} \mid g_{n}\right\rangle=\left\langle\psi_{m \mathbf{k}} \mid g_{n}\right\rangle_{S_{\beta}} \\
& =\exp (-i \mathbf{k} \cdot \mathbf{R}) i^{-l_{c}} \sum_{m_{c}} c_{l_{c} m_{c}}^{n} \sum_{\kappa} \mathcal{A}_{l_{c} m_{c}}^{\alpha \kappa *}(m, \mathbf{k}) \int_{0}^{R_{\alpha}} r_{\alpha}^{2} d r_{\alpha} g\left(r_{\alpha}\right) v_{l_{c}}^{\kappa}\left(r_{\alpha}\right) \tag{4}
\end{align*}
$$

Use has been made of spherical harmonics orthonormality. The 3 below radial integrals (for the relevant atom type representative α and the l_{c} value), corresponding to $u_{l_{c}}, \dot{u}_{l_{c}}$, and $u_{l_{c}}^{(2)}$

$$
\int_{0}^{R_{\alpha}} r_{\alpha}^{2} d r_{\alpha} g\left(r_{\alpha}\right) v_{l_{c}}^{\kappa}\left(r_{\alpha}\right)
$$

are evaluated separately.

As indicated in the Appendix D of Ref. (2), a symmetric orthonormalization is performed on $A_{m n}^{(\mathbf{k})}$ in a subsequent step, in order to get the basic unitary matrix $U_{m n}^{(\mathbf{k})}$, transforming the Bloch orbitals into Wannier functions.
Information regarding the "projection matrices" $A_{m n}^{(\mathbf{k})}$ is written in file seedname.amn, whose first line is a user comment, and the second line is the 3 integers: num_bands, num_kpts, num_wann. It is followed by num_bands \times num_wann \times num_kpts lines obtained as indicated below

$$
\begin{gathered}
\text { do } i_{\mathbf{k}}=1 \text {, num_kpts } \\
\text { do } m=1 \text {, num_bands } \\
\text { do } n=1 \text {, num_wann }
\end{gathered}
$$

$$
\begin{array}{ccccc}
m & n & i_{\mathbf{k}} & \Re\left[A_{m n}^{(\mathbf{k})}\right] & \Im\left[A_{m n}^{(\mathbf{k})}\right] \\
\cdots & \cdots & \cdots & \cdots & \cdots
\end{array}
$$

end do
end do
end do

3. Projections of Wannier functions

It can be of interest to calculate the projection of any Wannier function sitting in the central cell $\mathbf{R}=\mathbf{0}$ onto some given"building blocks". We can write

$$
\left|w_{n \mathbf{0}}\right\rangle=\sum_{l, \mathbf{R}}\left|w_{l \mathbf{R}}^{\mathrm{bb}}\right\rangle\left\langle w_{l \mathbf{R}}^{\mathrm{bb}} \mid w_{n \mathbf{0}}\right\rangle=\frac{\Omega}{(2 \pi)^{3}} \int_{B Z} d \mathbf{k} \sum_{m} U_{m n}^{(\mathbf{k})}\left|\psi_{m \mathbf{k}}\right\rangle
$$

We have also

$$
\left\langle w_{l \mathbf{R}}^{\mathrm{bb}}\right|=\frac{\Omega}{(2 \pi)^{3}} \int_{B Z} d \mathbf{k}^{\prime} e^{i \mathbf{k}^{\prime} \cdot \mathbf{R}} \sum_{j} U_{j l}^{* \mathrm{bb}\left(\mathbf{k}^{\prime}\right)}\left\langle\psi_{j \mathbf{k}^{\prime}}\right|
$$

so that

$$
\begin{align*}
\left\langle w_{l \mathbf{R}}^{\mathrm{bb}} \mid w_{n \mathbf{0}}\right\rangle & =\left[\frac{\Omega}{(2 \pi)^{3}}\right]^{2} \iint d \mathbf{k} d \mathbf{k}^{\prime} e^{i \mathbf{k}^{\prime} \cdot \mathbf{R}} \sum_{j, m} U_{j l}^{* \mathrm{bb}\left(\mathbf{k}^{\prime}\right)} U_{m n}^{(\mathbf{k})}\left\langle\psi_{j \mathbf{k}^{\prime}} \mid \psi_{m \mathbf{k}}\right\rangle \\
& =\frac{\Omega}{(2 \pi)^{3}} \int_{B Z} d \mathbf{k} e^{i \mathbf{k} \cdot \mathbf{R}} \sum_{m} U_{m l}^{* \mathrm{bb}(\mathbf{k})} U_{m n}^{(\mathbf{k})} \\
& =\frac{1}{N} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{R}} \sum_{m} U_{m l}^{* \mathrm{bb}(\mathbf{k})} U_{m n}^{(\mathbf{k})} \tag{5}
\end{align*}
$$

making use of $\left\langle\psi_{j \mathbf{k}^{\prime}} \mid \psi_{m \mathbf{k}}\right\rangle=\delta_{j m} \delta_{\mathbf{k}^{\prime} \mathbf{k}}$.

4. (l, m)-projections of Wannier functions

We want to calculate the $(l, m)-$ projection inside the sphere S_{β} centered on site β of a Wannier function in the central cell at $\mathbf{R}=\mathbf{0}$, i.e. the quantity $\left\langle w_{n \mathbf{0}} \mid w_{n \mathbf{0}}\right\rangle_{\substack{S_{\beta}}}$. We have

$$
\left|w_{n \mathbf{0}}\right\rangle=\frac{\Omega}{(2 \pi)^{3}} \int_{B Z} d \mathbf{k} \sum_{p} U_{p n}^{(\mathbf{k})}\left|\psi_{p \mathbf{k}}\right\rangle=\frac{1}{N} \sum_{\mathbf{k}} \sum_{p} U_{p n}^{(\mathbf{k})}\left|\psi_{p \mathbf{k}}\right\rangle
$$

We can write

$$
\left\langle w_{n \mathbf{0}} \mid w_{n \mathbf{0}}\right\rangle_{S_{\beta}}=\frac{1}{N^{2}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} \sum_{p, p^{\prime}} U_{p^{\prime} n}^{*\left(\mathbf{k}^{\prime}\right)} U_{p n}^{(\mathbf{k})}\left\langle\psi_{p^{\prime} \mathbf{k}^{\prime}} \mid \psi_{p \mathbf{k}}\right\rangle_{S_{\beta}} .
$$

The braket on the right-hand side of this equation is not a product of Kronecker functions, because the direct space integration is performed on a portion of the full unit cell only.
We suppose now that the sphere at β is not necessarily coinciding with the one of its atom representative α. This implies for the atomic positions that $\boldsymbol{\tau}_{\beta}=\boldsymbol{\tau}_{\alpha}+\mathbf{R}_{\beta}$, where \mathbf{R}_{β} is the direct lattice vectors combination connecting the atom at β with its representative at α. Using the notations of subsection 1 for the LAPW coefficients, a Bloch function representation inside the sphere S_{β} can be written symbolically

$$
\left.\psi_{p \mathbf{k}}(\mathbf{r})\right|_{S_{\beta}}=e^{i \mathbf{k} \cdot \mathbf{R}_{\beta}} \sum_{l, m} i^{l} \sum_{\kappa} \mathcal{A}_{l m}^{\alpha \kappa}(p, \mathbf{k}) v_{l}^{\kappa}\left(r_{\alpha}\right) Y_{l m}\left(\widehat{r}_{\alpha}\right) .
$$

Using the orthogonality of spherical harmonics, we have

$$
\begin{aligned}
\left\langle\psi_{p^{\prime} \mathbf{k}^{\prime}} \mid \psi_{p \mathbf{k}}\right\rangle_{S_{\beta}} & =e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{R}_{\beta}} \sum_{l, m} \sum_{\kappa_{1}, \kappa_{2}} \mathcal{A}_{l m}^{\alpha \kappa_{1} *}\left(p^{\prime}, \mathbf{k}^{\prime}\right) \mathcal{A}_{l m}^{\alpha \kappa_{2}}(p, \mathbf{k}) \int_{0}^{R_{\alpha}} r_{\alpha}^{2} d r_{\alpha} v_{l}^{\kappa_{1}}\left(r_{\alpha}\right) v_{l}^{\kappa_{2}}\left(r_{\alpha}\right) \\
& =\sum_{l, m}\left\{e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{R}_{\beta}} \sum_{\kappa_{1}, \kappa_{2}} \mathcal{A}_{l m}^{\alpha \kappa_{1} *}\left(p^{\prime}, \mathbf{k}^{\prime}\right) \mathcal{A}_{l m}^{\alpha \kappa_{2}}(p, \mathbf{k}) N_{l}^{\alpha \kappa_{1}, \kappa_{2}}\right\},
\end{aligned}
$$

where $N_{l}^{\alpha \kappa_{1}, \kappa_{2}}$ are the radial integrals

$$
N_{l}^{\alpha \kappa_{1}, \kappa_{2}}=\int_{0}^{R_{\alpha}} r_{\alpha}^{2} d r_{\alpha} v_{l}^{\kappa_{1}}\left(r_{\alpha}\right) v_{l}^{\kappa_{2}}\left(r_{\alpha}\right) .
$$

Because of the occurence of a (l, m)-summation in $\left\langle\psi_{p^{\prime} \mathbf{k}^{\prime}} \mid \psi_{p \mathbf{k}}\right\rangle_{S_{\beta}}$, we have the result

$$
\left\langle w_{n \mathbf{0}} \mid w_{n \mathbf{0}}\right\rangle_{S_{\beta}}=\frac{1}{N^{2}} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} e^{i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{R}_{\beta}} \sum_{p, p^{\prime}} U_{p^{\prime} n}^{*\left(\mathbf{k}^{\prime}\right)} U_{p n}^{(\mathbf{k})} \sum_{\kappa_{1}, \kappa_{2}} \mathcal{A}_{l m}^{\alpha \kappa_{1} *}\left(p^{\prime}, \mathbf{k}^{\prime}\right) \mathcal{A}_{l m}^{\alpha \kappa_{2}}(p, \mathbf{k}) N_{l}^{\alpha \kappa_{1}, \kappa_{2}} .
$$

The total charge associated with $\left|w_{n \mathbf{0}}\right\rangle$ in S_{β} is simply $\sum_{l, m}\left\langle w_{n \mathbf{0}} \mid w_{n \mathbf{0}}\right\rangle_{S_{\beta}}$.

References

[1] M. Posternak, A. Baldereschi, S. Massidda, and N. Marzari, Phys. Rev. B 65, 184422-1/11 (2002).
[2] N. Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997).
[3] G. Cangiani, A. Baldereschi, M. Posternak, and H. Krakauer, Phys. Rev. B 69, 121101(R)-1/4 (2004).
[4] M. Posternak, A. Baldereschi, E.J. Walter, and H. Krakauer, Phys. Rev. B 74, 125113-1/8 (2006).
[5] F. Lechermann, A. Georges, A. Poteryaev, S. Biermann, M. Posternak, A. Yamasaki, O.K. Andersen, Phys. Rev. B 74, 125120-1/26 (2006).
[6] H.J.F. Jansen and A.J. Freeman, Phys. Rev. B 30, 561 (1984).
[7] E.I. Blount, Solid State Physics 13, 305 (1962).
[8] D. Singh, Phys. Rev. B 43, 6388 (1991).

